The Role of Platelet Activation in the Pathogenesis of Atherothrombosis

Lisa K. Jennings, PhD
Director, Vascular Biology Center of Excellence
Professor, Department of Medicine
University of Tennessee Health Science Center
Memphis, Tennessee

Learning Objectives

• Understand the integral link between platelet aggregation and the coagulation cascade
• Recognize the role of platelet activation and aggregation in atherothrombosis
• Assess the rationale for therapeutic interventions to prevent platelet activation and aggregation

The Role of Platelets in ACS

• Intact endothelium releases antithrombogenic agents (prostacyclin, NO) and expresses CD39, an ectoADPase
• Rupture of coronary plaque exposes thrombogenic subendothelium
• Platelets are recruited to injury site, adhere, and spread
• Platelet adhesion signals the release of platelet agonists, recruitment of nearby platelets, and aggregate formation via GPIIb/IIIa
• Platelet-rich thrombus forms causing partial or total vascular occlusion and resulting in cardiac injury

Platelet Adhesion: The Role of von Willebrand Factor

- Exposure of subendothelium leads to binding of von Willebrand factor (vWF) to collagen within seconds
- Platelets tether to bound vWF and binding to collagen and other matrix proteins via other platelet surface receptors leads to stable adhesion
- Initial adhesion is followed by formation of stable bonds to matrix proteins and platelet activation
- vWF in plasma also has a significant prothrombotic effect by promoting platelet aggregation under high shear stress conditions
- Elevated vWF is a risk factor for acute coronary events

Platelet Adhesion and Aggregation

Platelet Activation

- Multiple potential agonists
- Major agonists include collagen, ADP, thromboxane A₂ (TxA₂) and thrombin
- Tissue factor (TF) released from damaged endothelial wall leads to generation of thrombin
- Generated thrombin binds to the platelet PAR1 receptor and contributes heightened platelet response

Platelet Activation Mechanisms

- Signals generated inside the activated platelet cause GPⅡb/Ⅲa conformational changes that expose fibrinogen or vWF binding sites
 - Phospholipid hydrolysis
 - Protein phosphorylation
 - Increase in platelet intracellular free Ca²⁺
- Binding of fibrinogen (dimeric) and vWF (multimeric) crosslinks adjacent platelets, promoting additional platelet activation and aggregate formation

Platelet Aggregation

- Signals generated inside the activated platelet cause GPⅡb/Ⅲa conformational changes that expose fibrinogen or vWF binding sites
 - Phospholipid hydrolysis
 - Protein phosphorylation
 - Increase in platelet intracellular free Ca²⁺
- Binding of fibrinogen (dimeric) and vWF (multimeric) crosslinks adjacent platelets, promoting additional platelet activation and aggregate formation

Platelet Aggregation

- Signals generated inside the activated platelet cause GPⅡb/Ⅲa conformational changes that expose fibrinogen or vWF binding sites
 - Phospholipid hydrolysis
 - Protein phosphorylation
 - Increase in platelet intracellular free Ca²⁺
- Binding of fibrinogen (dimeric) and vWF (multimeric) crosslinks adjacent platelets, promoting additional platelet activation and aggregate formation

The Role of Platelet Activation in the Pathogenesis of Atherothrombosis
Receptors and Ligands in Platelet Thrombus Formation

<table>
<thead>
<tr>
<th>Phase of response</th>
<th>Substrates, agonists, ligands</th>
<th>Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>Tethering and adhesion</td>
<td>vWF, GP Ib-IX-V, Collagen, Fibronectin, Fibrinogen, Laminin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPIb-IX-V, α2β1, GPIV-FcRγ, αIIbβ3, α5β1, α6β1</td>
</tr>
<tr>
<td>Propagation</td>
<td>Activation</td>
<td>α-thrombin, ADP, Thromboxane A2, Epinephrine, PAR1, PAR4, GP Ib-IX-V, P2Y1, P2Y12, TP</td>
</tr>
<tr>
<td></td>
<td>Aggregation</td>
<td>Fibrinogen, vWF, fibronectin, αIIbβ3 (activated)</td>
</tr>
<tr>
<td>Stabilization</td>
<td></td>
<td>P-selectin, Ephrin B1, CD45 ligand, PSGL-1, GPIb-IX-V, other EPH kinases (A4/B1)</td>
</tr>
</tbody>
</table>

Coagulation

- Not just a cascade of proteolytic reactions as originally proposed
- Coagulation reactions occur as overlapping steps on specific cell surfaces
- Hemostasis requires formation of consolidated platelet-fibrin plug and localization of procoagulant molecules
- Cells in the vasculature play different roles depending on procoagulant and anticoagulant activities
 - Adherent, activated platelets and platelet microparticles support procoagulant activities
 - Vascular endothelial cells maintain anticoagulation (via TFPIs, HS, and TM)

Coagulation Cascade

- Requires 2 cell types
 - TF-bearing cells
 - Platelets (procoagulant surface and coagulation factors)
- Physical separation of cell types also regulates process until injury occurs
- 3 steps of coagulation
 - Initiation
 - Amplification
 - Propagation

Initiation of Coagulation

- Occurs with exposed subendothelium TF or cells that express TF
- Prothrombinase complex is formed on the surface of activated platelets: factor VIIa binds TF, VIIa/TF and activated factor Xa assemble with factor Va
- Thrombin, once formed, amplifies, propagates, and sustains the coagulation response

Amplification of Coagulation

- Small amount of thrombin is generated on TF-bearing cells
- Thrombin amplifies coagulation response via several pathways
 - Activates nearby platelets through PAR1 receptor
 - Activates factors V and VIII on platelet surface
 - Releases factor VIII bound to vWF
 - Factor VIIa binds factor IXa and, in conjunction with platelet-bound Xla, forms intrinsic Xase
 - Intrinsic Xase activates factor X even faster than extrinsic Xase

Propagation of Coagulation

- Occurs on activated platelets
- Platelet surface is specialized for assembly of Xa/Va and IXa/VIIIa complexes
- Burst of thrombin results from activation of factor X
 - Propagates its own generation
 - Activates platelets via both PAR1 and PAR4
The Role of Platelet Activation in the Pathogenesis of Atherothrombosis

Thrombin Generated on Platelet Surface Produces Stable Clot

Factors V and XI, fibrinogen, and factor XIII allow for stable clot formation

Role of Platelets in Hemostasis

- Platelet adhesion is the first event in response to vascular injury
- Platelets are activated by collagen and released ADP, but thrombin induces more potent platelet response and procoagulant state
- Effective clot cannot be formed without adequate levels of procoagulant factors
- PAR1 and PAR4 both contribute to full activation of human platelets
- PAR4 requires increased levels of thrombin, likely activated during propagation phase of coagulation

Coagulation

Platelets

Adapted with permission from: Selwyn AP. Am J Cardiol. 2003;91(Suppl):3H-11H.
Platelets in ACS

- Antiplatelet therapies target TxA₂, ADP, GPIIb/IIIa, thrombin, collagen, and vWF
- Low amounts of thrombin can initiate both platelet activation and procoagulant activity
- Thrombin-mediated platelet activation can be inhibited by blocking PAR1
- Anticoagulants primarily target thrombin activity and fibrin generation

Coagulation Platelets

- Tissue factor → Factor Xa → Prothrombin → Thrombin
- LMWH, UFH
- Aspirin, Clopidogrel
- GP IIb/IIIa inhibitors
- LMWH, UFH
- Thromboxane A₂ → Fibrinogen cross-linking
- Activated platelets
- Plasmin → Fibrin degradation
- Thrombolytics

Conclusions

- Heightened platelet reactivity facilitates several pathologic processes
 - Infiltration of inflammatory cells into arterial wall contributing to the initiation and progression of atherogenesis
 - Maintenance of prothrombotic environment leading to thrombin generation and fibrin production
 - Platelet deposition and thrombus development in vessel wall following injury
- Redundancy in pathways makes inhibition with a single agent difficult
- Combination therapies have demonstrated reduction in risk of ischemic events

Adapted with permission from: Selwyn AP. J Am Coll Cardiol. 2003;91(Suppl):3H-11H.
Thank you for your participation.
To receive CME credit for this module, please visit:

http://www.coronaryinvaders.com/activation